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Abstract

Cooperative driving systems enable vehicles to adapt their motion to the sur-
rounding tra�c situation by utilizing information communicated by other vehi-
cles and infrastructure in the vicinity. How should these systems be designed
and integrated into the modern automobile? What are the needed functions, key
architectural elements and their relationships? We created a reference architec-
ture that systematically answers these questions and validated it in real world
usage scenarios. Key �ndings concern required services and enabling them via
the architecture. We present the reference architecture and discuss how it can
in�uence the design and implementation of such features in automotive systems.

Keywords: Reference architecture, cooperative driving, autonomous systems,
automotive embedded application, intelligent transportation systems

1. Introduction

The road transportation system today faces several challenges. The de-
mand for road transportation is increasing, while there is a simultaneous need
to reduce its environmental impact and achieve better control over road conges-
tion. The use of Information and Communication Technology (ICT) presents
an excellent opportunity to tackle these challenges through the use of novel In-
telligent Transportation Systems (ITS) solutions. Advanced ITS solutions act
as enablers for technologies that can play a key role in solving transportation
problems. For example, enabling a vehicle or road infrastructure to commu-
nicate its location, intention or other information to its surrounding vehicles
or nearby infrastructure, using wireless media, would allow innovative features
like cooperative driving. With cooperative driving facilities, a vehicle can use
the communicated information for adapting its own motion to the current tra�c
situation. Bene�ts of cooperative driving include improvements in the e�ciency
and safety of tra�c �ow, reduction of tra�c congestion, reduction of fuel con-
sumption and associated positive environmental and economic impacts. Addi-
tionally, cooperative driving systems can be used to enforce legal requirements

∗Corresponding author
Email addresses: behere@kth.se (Sagar Behere), martin@md.kth.se (Martin Törngren),

chen@md.kth.se (De-Jiu Chen)

Preprint submitted to Elsevier November 19, 2012



like speed limits, obedience of tra�c lights as well as for active safety functions
like collision avoidance via trajectory control.

1.1. Research motivation

The potential bene�ts of ITS solutions in general and cooperative driving
systems in particular, are strong motivators for research in this �eld. In order
to reach sustainable solutions, a systematic approach is required for the de-
sign and realization of system functionality. This involves, among other things,
the integration of new features into existing or legacy vehicle architectures and
the guarantee of robustness and performance. One approach to this is through
reference architectures. A reference architecture is described in [1] as ".. in

essence, a prede�ned architectural pattern, or set of patterns, possibly partially

or completely instantiated, designed, and proven for use in particular business

and technical contexts, together with supporting artifacts to enable their use.

Often, these artifacts are harvested from previous projects." A reference archi-
tecture speci�es the services and key architectural elements for achieving needed
functionality and quality goals. It is a standard conceptualization, which can
be instantiated in di�erent ways to create a speci�c architecture for a particu-
lar system. Reference architectures are commonly being adopted for enabling
better control of system integration and achieving non-functional goals such as
reusability, understandability, etc. [2]

1.2. Contribution of this paper

In this paper, we present a reference architecture for implementing a coop-
erative driving feature in a modern automobile. The architecture �ts into and
extends the existing vehicle architecture in a minimally invasive manner. It pro-
vides a clear de�nition of needed services and the architectural elements that
realize them. There is a good separation of concerns through modularization,
enabling the compartmentalization of related data handling and control func-
tions into hardware and software modules. This permits domain experts to focus
narrowly on their speci�c part. Furthermore, possible errors are isolated and
contained within respective architectural modules. The reference architecture
can be used to implement various cooperative driving applications like vehicle
platooning or convoying. An example instantiation of the reference architecture
on a heavy duty commercial truck is also presented in this paper. The instanti-
ation was used in the Grand Cooperative Driving Challenge (GCDC) 2011 [3].
Thus, the reference architecture has been validated in real world conditions.

1.3. Related work

Research in cooperative driving can be broadly split into two categories.
The �rst category comprises of focused research primarily within the areas of
automatic control, wireless communication and smart transport infrastructures.
This research aims to develop the key knowledge and technologies needed to
make cooperative driving possible. The second category consists of the research
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needed to integrate the individual technologies and develop comprehensive co-
operative driving solutions. Big research projects may include or combine both
categories. This section points to relevant research in roughly the following or-
der: impact of intelligent cooperative driving systems on tra�c �ow, selected
results from individual technology areas (i.e. the �rst category, as discussed
above) and �nally, integration e�orts relevant for entire systems (i.e. the second
category, as discussed above).

A literature survey on tra�c e�ects of automated vehicle guidance (AVG)
systems is presented in [4]. Three di�erent stages of development for AVG sys-
tems are described and the impact of each is presented. Of particular relevance
are the so-called stage 3 AVG systems, which include intelligent infrastructure,
for example, road-vehicle communication. For such systems, the estimated im-
provements in tra�c capacity are mentioned to be 100 to 200%, which is claimed
to correspond to a lane capacity of 4000 to 6000 vehicles/hour/lane. The e�ects
of cooperative adaptive cruise control (CACC) on tra�c �ow characteristics are
presented in [5]. One of their conclusions is that a high CACC penetration
rate (> 60%) appears to improve tra�c stability and throughput in high traf-
�c volume conditions. There is a reduction in the number of shock waves and
standard deviation of speed on a tra�c link. This is attributed to the reduced
time gaps and improved string stability due to CACC.

A survey of inter-vehicle communication (IVC) systems is presented in [6].
Di�erent applications of IVC are presented (e.g. collision avoidance) and options
for short range communication technologies and transport and security layers
are presented. Another survey of IVC and its application to intelligent vehicles
is given in [7]. It presents the use of radio and infrared waves as the commu-
nication media and also looks at some inter-vehicle communications protocols.
A categorization of IVC applications and comparison of their communication
requirements as well as IVC protocols are covered in [8]. Some communication
system requirements and related scenario speci�c challenges for autonomous and
cognitive automobiles are given in [9].

A historical review on the longitudinal and lateral control of autonomous
vehicle motion is given in [10]. The motions covered are car following, lane
keeping, lane changing and the subsequent longitudinal and lateral controls and
their integration. An overview of issues related to communication and control
in networked multi-vehicle systems is presented in [11]. The identi�ed issues are
related to coordination and control strategies, formalization of control architec-
tures and real time scheduling. Algorithms for lateral and longitudinal vehicle
control in a cooperative driving scenario with intervehicle communication are
described in [12]. The lateral control algorithm described there is based on dead
reckoning functions with a di�erential GPS. The longitudinal control algorithm
is based on the distance to the vehicle ahead, as measured with a laser radar and
also calculated from the localization data received from the vehicle. Some prac-
tical results of a longitudinal control concept for truck platooning are provided
in [13]. The concept uses a two stage controller, where the �rst stage consists
of an acceleration control loop that linearizes the nonlinearities of the vehicle
drivetrain. The second stage controller is a platooning controller designed with
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sliding mode techniques. A theoretical framework for analysis and design of a
CACC system is presented in [14]. In this paper, it is shown how feedforward
control enables small inter-vehicle distances while maintaining string stability.
Similar results are also presented in [15]. Yet another description of control
structures, lateral and longitudinal control is given in [16]. Details of the devel-
opment of an autonomous, intelligent cruise control system and as well as its
comparison with human driver models is given in [17]. The transient response of
the system was found to be superion to the human models, leading to smoother
and faster tra�c �ow. A comprehensive description of an automated Intelligent
Vehicle/Highway System (IVHS) is given in [18]. The paper addresses the range
of driving functions that can be automated and the degree of automation, the
decomposition of these functions into control tasks and the division of intelli-
gence between the vehicle and highway infrastructure. A control architecture
of an Automated Highway System (AHS) is presented in [19]. It also discusses
the design and safety veri�cation of the on-board vehicle control systems.

A survey and tutorial on requirements, architectures, challenges and stan-
dards related to vehicular networking is given presented in [20]. The paper also
provides an overview of current and past major ITS e�orts in the USA, Japan
and Europe. An overview of adaptive and cooperative vehicles, their main ap-
plications, pros and cons is provided in [21]. The paper looks at the SAFESPOT
project [22] as a case study. A somewhat dated, but still relevant survey of intel-
ligent vehicle applications is presented in [23]. Challenges of operating vehicle
platoons on unmodi�ed public motorways are described in [24]. New develop-
ments and trends for intelligent vehicles are identi�ed in [25]. It is concluded
there, that information sharing between vehicles and between vehicles and the
infrastructure is the most attractive trend in intelligent vehicle research.

A three layered architecture for cooperative driving of automated vehicles is
presented in [26]. The architecture includes two layers in the vehicle and one
layer in the infrastructure. An overview of the cooperative driving system for
automated vehicles in the Demo 2000 project together with the driving scenario
is given in [27].

Several large European projects have been directly or indirectly involved in
cooperative driving. The Cooperative Vehicle Infrastructure Systems (CVIS)
[28] is a big project that attempted to create a uni�ed technical solution allow-
ing all vehicles and infrastructure elements to communicate with each other.
The project de�ned and validated an open architecture and system concept for
a number of cooperative system applications and created an open application
framework that can run on the vehicle and roadside equipment. A closely re-
lated project to CVIS is SAFESPOT [22, 29]. This project shares the CVIS
infrastructure and some of its technical solutions, but has a greater emphasis on
safety and safety related applications. Among other results, the project has de-
veloped key enabling technologies for ad-hoc dynamic networking, accurate rel-
ative localisation and dynamic local tra�c maps. The CO-OPerative SystEms
for Intelligent Road Safety (COOPERS) project [30] focused on the develop-
ment of telematics applications intended to provide vehicles and drivers with
real time local situation based, safety related status and infrastructure status
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information. It aimed to extend the concepts of in-vehicle autonomous systems
and vehicle-to-vehicle communication (V2V) with tactical and strategic tra�c
information. A comparative synthesis of CVIS, SAFESPOT and COOPERS is
given in [31]. The Highly Automated Vehicles for Intelligent Transport (HAVE-
IT) project [32] had a twin focus on highly automated driving and developing
a safety architecture. The project results include development and validation
of next generation advanced driver assistance systems (ADAS), an electronic
"co-pilot", as well as a scalabe and safe architecture with advanced redundancy
management. The Safe Road Trains for the Environment (SARTRE) project
[33] has developed strategies and technologies that enable vehicle platoons to
operate on normal public highways. These large European projects have de-
veloped domain expertise related to sensors, algorithms and control, and also
architectures for integrating it. The architectures vary widely, with some be-
ing technology prototypes only while others are relatively closer to production,
because they utilize the standard tools and components available in the auto-
motive industry. The individual project websites contain a lot of information,
however many architectural details are often not openly published. Support
for formal veri�cation and validation of cooperative driving systems are usually
compiled as annexes, in a project's publications.

Compared to the progress in domain knowledge, there is a relative lack of
research on architectural aspects, especially in the context of extending and
integrating into existing vehicle architectures. The aim of the current work
is to address this de�cit. The reference architecture presented here provides a
research perspective, while the instantiated architecture provides a practical use
case of the research results.

1.4. Organization of this paper

This paper is organized as follows: Section 2 presents some technical con-
siderations in the design of cooperative driving systems. Section 3 describes
the reference architecture. The description commences by clarifying the con-
text and scope of the reference architecture, followed by a description of the
services the architecture must provide. Then, the main architectural elements
are introduced via a conceptual view, followed by an elaboration on each ele-
ment. Section 5 presents an instantiated example of the reference architecture.
The instantiated example is described with the aid of two di�erent architectural
views. Finally, section 6 contains a discussion of the reference architecture. It is
shown how the reference architecture takes the technical considerations of sec-
tion 2 into account and how it can be used to provide the functionality needed
to ful�ll cooperative driving scenarios. Next, it is shown how the reference ar-
chitecture relates to the AUTOSAR standardized software architecture. This
is followed by a comparison with some autonomous system architectures, where
it is shown that the reference architecture follows established principles of con-
structing autonomous systems. The discussion concludes by summarizing the
architectural highlights and future work.
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2. Technical considerations

2.1. Characteristics of cooperative driving systems

A cooperative driving system has little, no or mostly unpredictable control
over the behavior of other vehicles in the vicinity. Expected behavior may be
indicated by regulations and legislation, but from a purely technical point of
view, it is a safety hazard to assume that all other systems will conform to and
abide by the rules. The only certainty is the ability to control the ego vehicle
and broadcast information about it. Despite this, it is the responsibility of all
cooperative driving systems to maintain the integrity of the tra�c �ow in the
vicinity.

A cooperative driving system inherits general characteristics and software
speci�c challenges of all automotive systems. Such characteristics and chal-
lenges are related to distributed and heterogenous software, middleware, error
diagnosis and recovery, software reuse, resource mangement, complexity and
model based development and are described in more detail in [34, 35, 36, 37].
Additional characteristics speci�c to cooperative driving or those having a direct
impact on architecture are listed in this section. Some of the characteristics are
more relevant to an instantiated architecture, rather than a reference architec-
ture.

2.1.1. Functional characteristics

These characteristics are related to the speci�c behavior or functions of the
cooperative driving system

1. A cooperative driving system is characterized by distributed, hierarchical
control. The driving controller takes decisions and creates set-points for
high-level motion variables, like speed, acceleration etc. However, the ac-
tual regulation of these variables occurs in controllers that are completely
distinct from the platooning controller. For example, the cooperative driv-
ing controller may demand a certain amount of deceleration. It is the task
of the brake controller to actually decelerate the vehicle.

2. A cooperative driving system needs to perceive the environment and form
a world-view from fairly limited sensor input1. Therefore, it is necessary
to have a lot of trust in sensor data (e.g.: There really is no vehicle ahead).

3. A cooperative driving system is closely related in concept to an autonomous
system. Therefore, the presence of a system ego is needed in some form or
the other. In other words, there must be a system component that knows
what functions the system-as-a-whole is supposed to perform, and how
those functions are done by the system.

4. A cooperative driving system needs a human machine interface (HMI)
that can be used to make the human driver aware of what the system is
doing.

1as compared to the perception abilities of a human driver.
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2.1.2. Extra-functional characteristics

These characteristics are more about the qualities of the system and are
related to overall system operation, rather than speci�c behaviors.

1. Most sensors used by a cooperative driving system provide reliable data
only under a subset of circumstances that occur while driving coopera-
tively. Therefore, redundancy, multiple sensors based on di�erent princi-
ples, fusion and above all, reasoning on received data is unavoidable.

2. Cooperative driving involve an inherent safety paradox. Ideally, a system
should not depend on external input to assure its own safety. However, a
cooperative driving system must do so. It is a design challenge to make
the system as safe as possible, without making assumptions about the
quality and trustworthiness of incoming data.

3. In addition to the accuracy of input data, it is also necessary at all times
to maintain the accuracy of the ego vehicle data being broadcast by the
cooperative driving system to the surroundings, because this is used by
other vehicles in the vicinity.

4. The cooperative driving system should ideally be able to determine which
of its constituent components are working properly and use that as a basis
for system behavior. Thus, it should be possible to gracefully degrade
functionality based on the health of monitored components

5. A cooperative driving system is made up of a mixture of tasks. Some tasks
have hard real-time constraints, some are soft realtime, while others are
not generally time critical. Time criticality is sometimes directly linked
to safety criticality.

6. A cooperative driving system mixes safety critical and non-safety related
functions. A strict awareness needs to be maintained of this fact when
developing the architecture, because the impact goes beyond obvious tech-
nical matters and a�ects processes like certi�cations.

2.1.3. Miscellaneous characteristics

1. Cooperative driving is developed as an optional feature to an existing
vehicle platform. Therefore, the onus on the architect is two-fold. The
cooperative driving system

(a) should conform to the existing architecture, its possibilities and lim-
itations as far as possible

(b) should minimize required changes to the existing system. If any
changes are made, their long term impact must be clearly understood

2. The design of a cooperative driving system is signi�cantly a�ected by the
sensors used to obtain a "world-view". For example, a system using a
camera would di�er from a system using a radar, which in turn would be
di�erent from a system using a bank of lasers. It is therefore important
to have a �exible data fusion component, yet keep the rest of the system
invariant to its changes.
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3. Since the vehicle already has an HMI, which is part of its existing ar-
chitecture, decisions need to be made on the HMI speci�cation of the
cooperative driving system and whether it can �t into the existing HMI
scheme

4. Cooperative systems integrate domain expertise. Therefore, the architect
needs to have su�cient knowledge of all domain functions; mere knowledge
of functional and/or behavioral requirements is not su�cient to create the
architecture.

5. The development, testing and veri�cation activities for a cooperative driv-
ing system are entirely governed by the datalogging and visualization in-
frastructure. Although not a part of the �nal product, good datalogging
tools and frameworks are crucial during the development phase. As such,
the architecture must have native support for datalogging.

6. Data, control and computation need to be handled separately within the
architecture. A cooperative driving system is a mix of time and event trig-
gered control. The speci�cation and design of inter-component interfaces
is driven primarily by data, while the scheduling of the components and
their priorities are driven primarily by control and computation require-
ments

7. A cooperative driving system requires heavy parametrization and the ar-
chitecture should support live calibration methods so that parameter val-
ues can be correctly decided during live tests of the system

8. The development of cooperative driving systems is practically always a
mixture of visual programming methods (Simulink [38] etc.) and hand
coding. The architecture should enable smooth integration of the artifacts
produced by both methods.

9. The functionalities required can be classi�ed as low level (e.g.: input/output
functions) and high level (e.g.: algorithms, mode management etc.). This
has an impact on the execution environments and therefore the architec-
ture should segregate them into distinct blocks which can be executed on
di�erent execution environments.

10. A cooperative driving system's functions can also be classi�ed as rela-
tively static or dynamic in nature. Static elements (e.g.: i/o blocks) are
relatively �xed in the sense that their inputs, outputs, content and behav-
ior are well-de�ned. Dynamic elements have greater dependence on the
nature and type of their inputs and their behavior cannot be rigidly pre-
dicted in advance (e.g.: world models, control states). The architecture
should avoid mixing together static and dynamic functions in the same
architectural element.

2.2. Execution environments

Software execution environments and associated development processes for
embedded systems of the scale and magnitude of cooperative driving systems
can be broadly divided into two categories.
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The �rst category is that of dedicated microcontrollers executing code that
is auto-generated from models like those made in Simulink. This is the de facto
standard in the automotive industry, since the complete solution is created in
the domain of the problem (control engineering, signal processing etc.), using
the skills available to the engineers with domain expertise. Occasionally, the
coding may be done by hand, but the key point and distinction here is that the
dedicated microcontroller has limited requirements on general purpose compu-
tations.

The second category is that of general purpose computer hardware, executing
general purpose operating systems like Microsoft Windows, or Linux. Using
such execution environments is a relatively recent trend, and they are generally
restricted to use cases where the former category is sub-optimal, or simply
can not be used. When using general purpose operating systems, the code is
often hand-written (although there is an increasing trend of integrating auto-
generated code as well). Hand-written code necessarily implies that a solution
developed in the problem domain must be manually transferred to the computer
programming domain and this transformation in itself is often a cause of errors.

It is the responsibility of the architect to decide the appropriate environ-
ment or mixture of environments for the speci�c system under design. This
decision can have a lasting impact on the development process as well as the
product being developed. The �rst aid to decision making should be the nature
of the problem being solved. Certain problems, like the development of control
components is more naturally done in a model based development environment,
like Simulink. The runtime requirements of control components are also very
strict with regards to real-time capabilities, scheduling, computation times etc.
Therefore, it is often best to execute such components on dedicated microcon-
trollers, using code auto-generation. This assures that the model will execute
exactly as intended and there will be little unanticipated interference from other
software tasks. Components with more lenient runtime requirements, graphi-
cal displays, databases, datalogging and background tasks, TCP/IP or internet
communication etc. can be more easily coded up in a general purpose program-
ming language like C/C++ and this is the argument for usage of more general
purpose computing. Hybrid solutions can also be considered where applicable.
For example, it is possible to include hand-written code in Simulink blocks, and
at the same time, it is possible to use auto-generated code from Simulink in a
large, hand-coded software framework.

Very often, the choice is not made on technical merits alone. The program-
ming skills in the team can dictate the development method. A good architect
can take team skills into consideration and design solutions that the team can
e�ciently deliver. In other scenarios, it is possible to use one approach for rapid
prototyping and proof of concepts. Later, other approaches can be used for
production level systems.
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3. Reference architecture

This section describes the reference architecture, beginning with its scope
within the larger automobile architecture. Architectural details are then pre-
sented in gradual increments, to aid easy comprehension. The reference architec-
ture is independent of particular implementation technologies, tools and frame-
works. It is an abstract set of solution considerations, requirements, patterns
and guidelines, which are then concretized during an individual instantiation.

3.1. Context and scope

The electric architecture of a modern automobile can be logically seen as
a network of sensors, actuators and electronic control units (ECUs) [39]. The
network backbone is typically a bus like CAN, or for upcoming architectures,
FlexRAY. The sensors and actuators may either be directly connected to the
network buses, or they are connected to the ECUs and their associated data is
available as messages on the network.

Physically, the sensors, actuators and ECUs are geographically distributed
around the automobile. The locations are constrained by various factors includ-
ing function, operating environment constraints, EMC regulations, accessibility
etc. A large amount of cabling distributes power and network signals from the
sources to the sinks.

Features and functions of the automobile are then realized via a combination
of sensors, actuators and ECUs. The ECUs execute software which uses sensor
data, performs computation and control tasks and in�uences the actuators. For
example, a simple cruise control system reads information about the current
vehicle speed and tries to maintain a set-point speed via control of the engine.

Addition of simple new features to the automobile is done via addition of
software code to existing ECUs. More complicated features, which require ad-
ditional sensors/actuators or more computational resources than are available
in the existing ECUs, are implemented via the addition of one or more ECUs
to the vehicle network. The new sensors/actuators are then either directly con-
nected to the network or to the newly added ECUs. Often, the newly added
ECUs simply control existing actuators in novel ways, via actuation messages
sent over the vehicle bus.

Within this physical (hardware+software) context, a cooperative driving
feature can be realized by adding a system of sensors, actuators and ECUs to an
existing vehicle network (Figure 1). The reference architecture described in this
paper is constrained in scope to such an additional system. Note however, that
the reference architecture is described in terms of logical architecture (elements,
information �ows, etc.) because reference architectures, by their very nature,
refrain from dictating physical implementations.

3.2. Services needed in a cooperative driving system

This subsection describes the services that need to be present in a cooperative
driving system. These services are either already present in the vehicle, or they
need to be introduced by the cooperative driving system. In both cases, it
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Figure 1: Vehicle network as a context for the reference architecture

is the task of the architecture to enable smooth integration/introduction of the
services and associated data�ows. The services need not be explicit architectural
artifacts, nevertheless their existence is still essential in an implied form.

Positioning is at the core of a cooperative driving system. The positioning
service provides the location of the ego vehicle and other objects in the
vicinity with the required accuracy. Ego vehicle position can be obtained
using GPS technology and the GPS signals are often fused with data from
inertial sensors in the vehicle and other positioning information obtained
over the wireless. Positions of other vehicles and road objects can be ob-
tained via wireless communication and sensors like radar, cameras, lidar
etc. It is also often necessary to provide all positions as coordinates on a
map, and when this is done, the service is called 'map matched position-
ing'.

Clock synchronization services are needed because the data packets exchanged
between the cooperative driving systems need to be timestamped. The
timestamps need to be synchronized across all vehicles. For the times-
tamps to be synchronized, all the system clocks should be synchronized
to a common clock source. Typically, the clock source is the GPS time
signal. Periodic synchronization with the GPS time is necessary due to
the inevitable drift in clock mechanisms of any electronic device.

World modeling is the creation and updates of the state of the world in an
area of interest around the ego vehicle. This includes other vehicles and
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their positions and intentions as well as the state of the infrastructure
like current speed limits, lanes, surface conditions, tra�c signals and so
on. Strictly speaking, the cooperative driving system operates not in the
world as the human driver sees it, but in a virtual world synthesized from
the sensor data stream a.k.a the world model. The world model needs to
match reality as closely as possible, for the cooperative driving system's
actions to be acceptable. Further details of world modeling for cooperative
intelligent vehicles is given in [40].

Wireless communication is necessary when at least one of the communicat-
ing devices is mobile. This is the case with cooperative driving systems.
The term, 'wireless communication' encompasses a broad range of tech-
nologies and protocols. Some of these are in the process of becoming
standards in the �eld of Intelligent Transport Systems (ITS) [41].Wireless
communication services should provide abstractions via which the coop-
erative driving system can send and receive data with the outside world.

Vehicle interface is the mechanism via which the cooperative driving system
exerts in�uence on the vehicle motion. This is the interface via which data
can be read from and sent to other ECUs. It is the gateway to all other
vehicle functions.

Control services are needed to obtain set-point values for the vehicle motion
actuators. These services enable the cooperative driving system to answer
the all important question, "What should the system be doing right now?"
In addition to managing the current vehicle motion, the control services
may also be responsible for future planning and alternative behavior in
case of errors and emergencies. All the other services described so far are
essentially helpers to the control services.

Supervision services are those that are ultimately responsible for the correct
functioning of the cooperative driving system. They start and stop the
other services as necessary, monitor the system for signs of unusual be-
havior and perform other supervisory tasks. They are needed because
(semi) autonomous systems today are not at a stage where perfect behav-
ior emerges out of the interaction of constituent functional components.
Informally, it is the supervisory services that maintain the controlling stake
in the system.

HMI services are needed to provide an insight into the system, as it operates.
Especially for critical systems like cooperative driving, it can be unnerving
for the human driver to not know what is going on. HMI services are
generally always present in the architecture of a modern automobile. The
cooperative driving architecture needs to integrate and non-destructively
extend the available services in the vehicle.

Diagnostics, error handling and recovery services are needed in any large
and complex system. Systems fail, software has bugs and faults occur.
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Figure 2: Conceptual view of the reference architecture

These are facts and it is necessary to have well-de�ned means to recover
from error conditions and diagnose/troubleshoot the system in event of
failure. These service assume greater importance during the system de-
velopment and calibration phase and should therefore be built right into
the architecture, rather than being added as an afterthought.

All of the services above are enabled by the reference architecture.

3.3. Conceptual view of the reference architecture

An architecture can be described with the aid of views. A view is de�ned
by ISO 42010 as "A representation of a whole system from the perspective of
a related set of concerns." There are several types of views which can be col-
lectively used for a comprehensive architecture description [42, 43]. We use the
conceptual view described in [42] to describe the reference architecture, since
it corresponds well to the abstraction level at which the reference architecture
exists. The conceptual view describes the system in terms of its major design
elements and the relationships among them. It is independent of implementa-
tion decisions. This is a reasonable view for our reference architecture, since it
captures the essence of the architecture at a high level of abstraction. Imple-
mentation speci�c architecture is created during instantiation of the reference
architecture and an instantiated example is described in section 5. The concep-
tual reference architecture is shown in Figure 2.

The architecture centers around a so-called world model and some elements
which are categorized based on their interaction with the world model. There
are also additional elements that do not directly interact with the world model,
but nevertheless have speci�c functional roles. The entire architecture and its
functionality is ultimately supervised by a single, special element that consti-
tutes the identity of the system, from the viewpoint of the system's context.
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In Figure 2, the squares indicate architectural elements with speci�c roles.
The circles indicate elements capable of running generic data processing algo-
rithms (e.g. band pass �ltering) on the data in the world model. The arrows in-
dicate data �ow. Bi-directional arrows indicate bi-directional data�ow between
the connected elements. The ellipses indicate plugins (placeholders), which can
be executed by the architectural elements for ful�lling their functional role.
Plugins enable a clean separation of algorithms and structure, since di�erent
plugins implementing di�erent algorithms can be swapped in and out of the
same architectural element.

A detailed description of the architectural elements now follows.

3.3.1. Key properties of all architectural elements

Before presenting the individual architectural elements, it is useful to un-
derstand key properties common to all architectural elements. These properties
are independent of the actual role and behavior of each architectural element.

An element may support multiple modes of operation and can switch between
these modes during operation. The transitions can occur either as a result of a
request from another element, or it could be self-dictated.

Each element contains diagnostic facilities and interfaces. The element can
either self-diagnose its errors and status, or can permit other elements to do so
via a diagnostic interface. In all cases, information about the current health of
the element is accessible on demand.

The elements support lifecycle management operations like starting, stop-
ping, pausing, restarting and other introspective functions. Elements also have
various types of data interfaces which can be connected to other elements to
form a data�ow network among the elements.

In addition to data �ow, all elements support synchronous and asynchronous
command interfaces. These interfaces permit the elements to access and utilize
functionality present in other elements.

3.3.2. The world model

The world model is a dynamic, formal representation of the states of the ego
vehicle and the vehicles of interest in the vicinity of the ego vehicle. The state,
in the context of cooperative driving, consists of those variables, the knowl-
edge of which is required for controlling the current and future vehicle motion.
This includes values of current physical variables like vehicle velocity, acceler-
ation, position etc. Also required would be variables indicating future intent
of a vehicle. For example, intention to decelerate, change lanes or initiate an
overtaking maneuver. Besides vehicles, the world model also stores informa-
tion about states of road infrastructure. This could be information about tra�c
lights, which includes their position, current color and time to next color change.
Other infrastructure information includes applicable speed limits, information
about lane closures and hazard warnings. In addition to state information, the
world model may also contain data and metadata associated with, or derived
from the sensed/received information. Examples of metadata are identi�cation
numbers of detected vehicles, con�dence estimates of received information etc.
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The data in the world model can be extended to include not only the infor-
mation about the external world, but also the internal "world" of the vehicle
and the cooperative driving system. This would be the operating modes of the
system, state of health of individual components, active errors etc. Finally, the
model can be extended to include historical data as well as short term predictions
of the current variable values. Predictions are necessary because information
received over wireless media is susceptible to intermittent disruptions, or cer-
tain data sources may simply be unavailable (GPS reception, for example, gets
disrupted under bridges or in tunnels). The exact information that needs to be
present in the world model, as well as the required quality of that information,
depends on the speci�c application for which the system is being designed. A
good example of developing a world model can be found in [40], which describes
a "Local Dynamic Map" developed for the SAFESPOT project[22].

The information in the world model could be hierarchically layered, with
the raw sensor readings at the lower layers, which are combined and fused
along successive upper layers to get high-con�dence information about the world
objects. It is important to point out that the world model need not perform the
actual processing (combination, fusion etc.) of the data it contains. That can
be done by external model data processors that interact with the world model.
For example, a speci�c model data processor instance could contain a vehicle
motion model which it uses to predict future values of vehicle velocity. The world
model only needs to be a structured data pool or repository that performs the
functions of holding data and providing access to the data it holds.

The world model assures the consistency, reliability and time related char-
acteristics of the data it holds. Access to the data and metadata of the world
model is via a rich variety of interfaces. The world model supports concur-
rent access, thereby enabling a multitude to external entities to simultaneously
insert, modify and extract its contents.

The world model is implemented via plugins, which could use di�erent mech-
anisms to store the information. For example, the data could be held in a dis-
tributed database while the world model would be in the form of a database
schema. Alternatively, a geographical or topological map could be the basis,
which is populated with objects and their attributes.

3.3.3. World model data processors, suppliers and consumers

Model data processors are generic elements that work with the data in the
world model. They are responsible for processing, modifying, combining or
otherwise transforming the information in the world model. They read input
data from the world model and their output data is fed back into the world
model. Examples of model data processors would be entities that fuse the raw
sensor information in the lower layers of a hierarchical world model and write it
into the higher layers. An example of this would be a model data processor that
takes current velocity readings as provided by the GPS and sensors in the wheel,
axle, transmission and fuses them to provide a single, high-con�dence velocity
estimate. Another example of a model data processor would be a function
that performs "map-matching". Such a function would perform the task of
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maintaining the geographic location attributes of world model objects, with
reference to a speci�c map. This would involve reading the latitude/longitude
information of each vehicle and transforming it into coordinates on the particular
map. Model data processors are represented by circles in Figure 2, and the
associated bidirectional arrows indicate that the world model is their primary
source and sink.

Model data suppliers are elements that feed data to the world model. This
could be local sensors, entities that extract data from ego vehicle gateways,
entities that supply data obtained over the wireless interface as well as so-called
super sensors. The local sensors are those sensors connected directly to the
cooperative driving system and whose output is not available on the vehicle bus.
For example, a sweeping laser range�nder installed together with the cooperative
driving system package. The ego vehicle gateway provides information about the
ego vehicle, which is accessible over the vehicle's data network, like the CAN
bus. This information is generally related to the vehicle speed, acceleration,
engine torque, status of accelerator and brake pedals, steering wheel angle etc.
Super sensors are those elements that preprocess information from sensors like
camera, radar, lidar etc. and provide higher level information directly to the
world model with high con�dence estimates. An example of such information
is the location of lane markings, which are extracted from the camera images.
The model data suppliers generally have a write-only access to the world model.

Model data consumers are elements that behave as sinks to the world model.
These elements generally have read-only access to the world model. Two ex-
amples of model data consumers shown in Figure 2 are the wireless broadcast
and the HMI elements. The wireless broadcast element periodically reads ego
vehicle state data (position, velocity, acceleration etc.) from the world model
and sends it out over the wireless interface. Similarly, the HMI element reads
data from the world model, and sends it to the vehicle HMI system, perhaps
after some pre-processing steps. This data includes the current state of the
cooperative driving system (active/inactive), detected tra�c lights and speed
limits, status of maneuvers currently being executed, detected vehicles etc.

In summary, data �ows into the world model through the model data sup-
pliers. It is transformed within the world model by the model data processors
and it �ows out of the world model and into the model data consumers.

3.3.4. Wireless and the semantic data analyzer

The wireless element is the abstraction for the physical wireless interface(s),
together with all the associated transmission, routing and interaction protocols.
The wireless interface assumes a role of great signi�cance in a cooperative driving
system, because it is the primary means of communicating with other vehicles
and the infrastructure. This information includes the status data broadcasted
periodically by the vehicles (speed, position etc.) and the infrastructure(speed
limits, tra�c lights etc.). It can also contain service announcements and other
ITS scenario speci�c information. The information is categorized according to
a taxonomy and only certain categories of information need to go to the world
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model. Therefore, there is a need for investigating, classifying and appropri-
ately routing the received wireless data content. This task is conceptually dis-
tinct from the task of receiving the data and is therefore ful�lled by a separate
architectural element, the semantic data analyzer.

The semantic data analyzer peeks into the incoming data stream and is
equipped with the resources needed to categorize the content according to pre-
de�ned application speci�c taxonomies. This task necessarily involves a degree
of semantic understanding of the data, and hence the name. After categorizing
the incoming data, the semantic data analyzer then routes the data to the rel-
evant architectural elements. For example, data related to the acceleration of
the vehicle ahead will go to the world model. A request to join platoon, when
the ego vehicle is functioning as platoon leader might be routed to the supervi-
sor. In the reference architecture, it is anticipated that the incoming data will
be routed either to the world model, or to the supervisor. Further details of
what the supervisor does and why data should be routed there are provided in
subsection 3.3.6.

3.3.5. Control

The control element in the architecture is responsible for the motion of the
ego vehicle and all the decision making related to that process. The speci�c tasks
of the control element are dependent on the nature of the cooperative driving
task(s) the system is designed for. Consequently, the information needed by the
control element is also task speci�c. It will however almost de�nitely include
the variables re�ecting the current motion of the vehicle (velocity, acceleration,
braking torque, demand torque etc.) because there are needed for any closed
loop control of the vehicle motion, which is the ultimate goal of the cooperative
driving system. As an application speci�c addition, the controller for a platoon-
ing system may require some motion variables of the vehicles ahead, because
taking these into consideration can lead to better control of phenomenon like
string e�ects in the platoon. It will also require information about the infras-
tructure states (Red light, don't move. Or, max speed 50km/h). Regardless of
the speci�c control tasks, it is reasonable to assume that the control system will
in�uence actuators directly connected to the system, as well as those present in
other ego vehicle subsystems. A trivial example of local actuation is the opera-
tion of lamps (During system development and demonstrations, there is often a
requirement to operate blinking lights mounted on the vehicle when driving in
automatic mode). More typically, the cooperative driving control element will
send messages to other vehicle subsystems over the vehicle's data bus. These
are speed, engine torque, vehicle acceleration and braking setpoints, which the
existing subsystems are already equipped to respond to. The control system
will also need access to the world model, in order to perform its function.

It is relevant to question why the control element isn't simply classi�ed as
a consumer of the world model. In a sense, it is. It can also in�uence the
content of the world model and in that sense, it is a model supplier too. The
reason it is listed separately in the description of this reference architecture is to
highlight the crucial functional role it plays in the cooperative driving system.
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It is not a simple data consumer (compare to HMI), nor is it a classical data
source (compare to a radar sensor). The world model may be considered as
the primary enabler in the system and the control is what it primarily enables.
Furthermore, it is very often the case that the control element is implemented
in distinct ways in the implementation architecture and having it as a distinct
element in the conceptual architecture leads to a better mapping between the
conceptual and implementation architectures. Beyond these arguments, the
actual classi�cation of the control element is of importance only to compulsive
categorizers, and adds no value to the architectural description.

3.3.6. Supervisor

The supervisor is one of the most special parts of the reference architecture.
Given the description of the architecture as a set of connected elements, the
supervisor is akin to the canvas the elements are drawn upon. The following
paragraphs describe the supervisor in di�erent ways, in order to convey a sense
of the supervisor's role.

It is the supervisor that encodes an understanding of the various architec-
tural elements, their capabilities and limitations. Thus, it is the supervisor that
is aware of the presence of the world model, the control and other elements
and how they must function in order to generate speci�c behaviors of the coop-
erative driving system. The supervisor "knows" what behavior is expected of
the cooperative driving system in a given context and uses them to achieve the
expected behavior. The elements in turn pass on all unknown inputs, locally
unresolvable errors and requests to the supervisor and expect instructions on
how they should proceed.

The cooperative driving system can be considered as an autonomous sys-
tem, within some tightly constrained de�nition of autonomy. Regardless of the
constraints, all autonomous systems need a single ego, or Self which represents
the entire system as a cohesive unit. The supervisor performs this role, and
provides the system identity to its context.

The supervisor can query the other architectural elements for speci�c inputs
and handle queries generated by the elements. Let us illustrate this with an
example from the cooperative platooning system described in section 5. When
the system receives a request from another vehicle to join the platoon, the
semantic data analyzer marks this request as something that is not destined
for the world model. It then gets routed to the supervisor, who in turn passes
it to the control, because the supervisor is aware that the control can answer
such a request. The control returns a yes or no response, which the supervisor
sends o� to the wireless broadcast element. Another example scenario where
the supervisor is involved in the imposition of radio silence is described later in
section 6.2.1.

From a connections perspective, the supervisor has data and control con-
nections with all other architectural elements. It uses these connections to ex-
change data with the elements, and perform control actions like setting modes
in the elements. Depending on the implementation technologies, the supervi-
sor to element connections may have to be statically speci�ed, or they may be
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dynamically generated as needed.
In addition to arbitration tasks, the supervisor is also responsible for system

level error management, diagnostics and health monitoring of individual archi-
tectural elements. It handles lifecycle issues like starting and stopping elements
and the encoded knowledge of the system and its functioning can be utilized for
graceful degradation of system functionality, as and when needed. The super-
visor also performs mode management functions for the entire system and can
cascade the system modes into appropriate modes for the individual elements.
This refers to both system speci�c modes (e.g.: state of a processing node) as
well as application speci�c modes.

In its role as a "catch all" for the system, the supervisor also performs
an important practical architectural function. It is the place to implement
all unforeseen system functionality. The need for such functionality arises in
almost all practical projects and the solution is often to employ 'quick-and-dirty
local hacks' that break the otherwise clean design. Our reference architecture
acknowledges that such hacks are practically unavoidable and instead suggests
the supervisor as a natural location to code them. Thus, by preventing dirty
hacks from popping up all over the architecture, the supervisor provides a clean
way to do dirty hacks. In due time, they can be merged into the appropriate
architectural elements.

Examples of information used by the supervisor would be: Periodic health
status of components, information about failures of speci�c sensors or entire
elements, current operating mode of the controller, information about external
demands like imposition of radio silence etc.

4. Guidelines for instantiation of the reference architecture

This section presents some guidelines for instantiating a prototype of the
reference architecture. It attempts to answer the question, "What should a
system architect think about, before attempting an instantiation of the reference
architecture?". It is important to emphasize the prototyping aspect, wherein
the instantiation is likely to revolve around the capabilites of available tools,
libraries and frameworks. For production systems, there are a large number
of techno-commercial, platform and supply chain considerations which often
outweigh purely technical considerations.

4.1. Minimum data set

Before considering any instantiation, due regard must obviously be given to
the availability of the minimum set of information needed for such a system to
work. What is the minimum information set? The exact answer is of course
application speci�c, but the minimum set should be evolved by assessing the
bare functionality needed to make the application work. For example, in order
to determine setpoints for the vehicle motion, is the required information about
the current vehicle state available over the vehicle data bus? Next, the mini-
mum requirement in a cooperative driving scenario is that the vehicle should
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not collide with a vehicle in front of it. In order to do this, it is necessary to de-
tect a vehicle ahead and have distance related information for it. Whether this
is obtained via a local radar sensor or over the wireless is secondary (although
still important). Next, the vehicle should respect prevalent speed limits and
not jump red lights. This necessitates information about detected infrastruc-
ture states. If the cooperative driving scenario requires shifting of lanes, then
information regarding the lane the ego vehicle is in, as well as the presence and
availability of other lanes will be required. Thus, the minimum set of required
information is necessarily dependant on the scenario requirements and it is not
possible to arbitrarily specify a minimum set.

4.2. Mapping to physical components

How should the elements of the reference architecture be mapped to phys-
ical components? In the �rst step, the computing platforms and execution
environments for implementing the elements should be determined. Based on
the element implementation, the inter-element communication mechanisms can
be chosen in the second step. Several iterations of these two steps may be neces-
sary. All the inter-element communication mechanisms need not be of the same
type.

4.2.1. Element implementation

We suggest that the following aspects should be considered for implementa-
tion of the architectural elements:

1. Computational capacity: This is the primary consideration when se-
lecting a computing platform. Especially in the case of the world model
and assorted model data processors, the computational capacity required
can vary considerably depending on the the complexity of the algorithms
being implemented. A simple in-memory key-value store has vastly di�er-
ent minimum requirements compared to a distributed, relational database
with an SQL query interface. Similarly, some �ltering algorithms can re-
quire heavy number crunching capabilities. A typical example is feature
extraction from digital images. Such algorithms are also common in super
sensors that require heavy signal processing(e.g. radar). The HMI can
consume a surprising amount of processing power, especially if utilizing
graphical widgets or tables with continuously updating rows.

2. Execution environment: Should the element be designed in a tool
like Simulink and executed in an environment like dSpace[44] or xPC
Target[45] using auto code generation and execution? Should it be de-
signed in Simulink and auto generated code from the model be hand
massaged and executed on a generic computer? Or should the element
be hand coded using standard C/C++/Java libraries and executed on a
generic computer+operating system? Should the element be a hard real-
time task executing in a Xenomai thread on Linux? There are numerous
such choices here, each with its pros and cons. We suggest that the wire-
less and world model elements should run on general purposed computers
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(with either stock or realtime operating system kernels) as these will most
likely require hand coding. The control element will probably be designed
using a tool like Simulink or Labview and it is most conveniently executed
on vendor supported hardware that can directly execute the models in
realtime i.e. "Push a button and watch the model execute". When as-
signing elements to physical computers, the concept of "mixed criticality"
should also be considered. Is a safety critical function running on the same
computer as a less critical function? Are the executions partitioned su�-
ciently so that they will not interfere with each other? Typically the HMI
element is not as critical as the control or world model and it might make
sense to isolate it completely on another computer, together with the data
logging functions (which are not realtime or safety critical anyway).

SIDE NOTE: While it is theoretically possible to execute the control element
in a hard realtime task on a general purpose RTOS, practical considerations
often make it di�cult. For example, the control element generally requires to
talk to the vehicle network over CAN. However, most CAN device drivers for
general purpose OSes are not designed with realtime performance in mind. On
a dual kernel RTOS system like Linux+Xenomai, the moment the CAN drivers
make a syscall, the thread will be dropped from realtime. This necessitates
separation of the i/o and the control calculations into di�erent threads, with
the requirement of realtime data transfer between them. Situations like this
can get messy rapidly and always require high technical competence. Mostly, it
is just vastly simpler to run the control on a system like dSpace.

3. Vendor solutions: Some elements of the architecture may come as pre-
packaged vendor black boxes. In such cases, there is little choice but to use
whatever technologies these boxes support. For example, a super sensor
like radar, or a local sensor like GPS or the wireless may come packaged
from a vendor as a black box that outputs data in a certain format on the
CAN bus, or over a serial connection or ethernet. In such a case, the only
option is to integrate the box into the architecture using whatever means
available.

4. Testing/calibration needs: Does an element contain many internal
variables that need to be constantly adjusted while tests are being con-
ducted in the actual vehicle? Does element data need to be logged? Will
it be required to replay the logged data through the element for o�ine
testing of that element, or of a combination of elements? Such consider-
ations have an impact on the tools and execution environments used to
develop the elements. Certain development tools or frameworks o�er fa-
cilities that enable testing/calibration/logging to be done with ease. This
can often tip the balance in favor of the tool/framework. And the cho-
sen tool/framework usually works only on speci�c computing platforms or
execution environments.
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4.2.2. Communication mechanisms

The choice of communication mechanisms depends on the bandwith require-
ments, required quality of service, communication pattern and �nally (and very
importantly) on the technical implementation of the components. In the context
of this discussion, 'communication mechanisms' includes everything from com-
munication between two threads running in the same process to communication
between distinct computers connected via some form of networking protocol.

1. Bandwidth requirements: Di�erent architectural elements have dif-
ferent data transfer requirements and these must be accounted for when
selecting the communication mechanism. In the reference architecture, the
world model element requires maximum bandwidth, since it continuously
receives and serves data. The data transfer requirements for sensors de-
pend to some extent on the local processing done before the sensor output.
For example, in the case of a camera sensor, the bandwidth required for
transferring even 320x240 images at 30 frames per second is considerably
higher than the bandwidth required for transferring information about
extracted features from the image. The HMI is another element that can
require potentially high bandwidth. For the control elements, the band-
width requirements are not as high as that for the world model, but the
quality of service requirements are more stringent. Typically, communi-
cation via shared memory between two processes on the same computer
has the highest bandwidth while a CAN bus will have the lowest band-
width for the communication scenarios likely to occur in an instantiation
of the reference architecture. Streaming data using UDP/TCP packets
over ethernet lies somewhere in between.

2. Quality of Service(QoS): The temporal and spatial requirements of
data distribution are speci�ed by QoS policies. The policies can specify
requirements for durability, reliability, deadlines, latency budgets, trans-
port priorities, lifespan, partitioning etc. of the transmitted data. It must
be considered whether the selected means of communication permits the
tweaking of desired QoS parameters and in case it doesn't, the impact this
will have on the correctness of the system behavior must be deterministi-
cally known in advance. The selection of QoS parameters depends largely
on the algorithms being used. For example, some algorithms will require
the newest sensor values known at any instant, and delayed historical val-
ues may be of little importance. In such a case, it is not necessary to
implement a bu�ered data connection to the relevant element.

3. Communication pattern: Certain communication mechanisms (for ex-
ample, ZeroMQ[46], DDS[47] ) impose a pattern on top of the commu-
nication. A pattern can be publish/subscribe, push/pull, request/reply,
pipeline, exclusive pair etc. If the selected communication mechanism
permits it, we recommend a publish/subscribe pattern for continuous
data�ows between data producers and data consumers. This is because
the publish/subscribe pattern enables good decoupling of the communica-
tion partners (the publisher need not know which or how many subscribers
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are present and vice-versa) while satisfying functional requirements. For
asynchronous data requests(typically involving the supervisor), we recom-
mend the request/reply pattern. The pipeline pattern is not needed in
this architecture.

4. Component implementation: When prototyping, it is not always pos-
sible to have a component implementation that supports all kinds of com-
munication mechanisms. For example, an autogenerated component from
Simulink executing on a rapid prototyping setup like xPC target, implies
that something like DDS together with all its Qos goodies, can not be
used. (This is because the xPC setup supports an extremely limited set of
communication possibilities: serial, CAN, basic udp packets). Similarly,
usage of speci�c programming languages, libraries or component frame-
works puts rather strong limits on what communication mechanisms can
be used. As another example, the AUTOSAR platform does not have
built-in support for the publish/subscribe pattern. The point being made
here is that any practical implementation narrows down the set of usable
communication mechanisms.

5. Instantiated example

In this section, we present an instantiation i.e. a concrete realization of the
reference architecture for a cooperative adaptive cruise control (CACC) system.
This CACC system can control the longitudinal motion of a vehicle and is
activated in a platooning scenario. A platooning scenario is one possible scenario
in cooperative driving, in which vehicles drive one behind the other. The �rst
vehicle is denoted as the 'lead vehicle' and it is generally driven manually. The
rest of the vehicles follow the lead vehicle autonomously. The lead vehicle and
the following vehicles together form a 'platoon'. It is useful in a rough way to
think of a platoon of vehicles as a 'road train'. A platoon on a road can split
into multiple platoons, merge with other platoons etc. The platoon must obey
the local road laws, respect speed limits, react appropriately to tra�c lights and
so on.

The instantiated architecture was developed and tested on a heavy duty
commercial truck, within the Scoop project[48]. The Scoop project was formed
in order to create a participating entry in the Grand Cooperative Driving Chal-
lenge(GCDC) 2011 [3]. The GCDC 2011 involved several competing teams in
urban and highway platooning scenarios. It was held at Helmond, the Nether-
lands in May 2011. The Scoop team performed well in the challenge, thereby
inspiring con�dence both in the reference architecture as well as this particu-
lar instantiation. Interestingly, the addition of the cooperative driving system
required no signi�cant changes to the existing vehicle systems.

The instantiated architecture is described in the following subsections using
a hardware view and the so-called module architecture view [42] since these
views correspond well to the implementation level detail we wish to describe.
Detailed views such as the execution view [42], which shows runtime properties
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Figure 3: Hardware view of instantiated architecture

and connections, are excluded since they are beyond the scope of this paper.
They can be found in the project's technical report[49].

5.1. Hardware view

This description uses the hardware view primarily to establish the context of
the instantiated architecture. It shows how the developed system �ts in within
the rest of the vehicle architecture. The hardware view is shown in Figure 3.

The system consists of a generic computer and an automotive grade Elec-
tronic Control Unit (ECU) interconnected via a 250kbps CAN bus. A wireless
mini-pci card is installed on the generic computer and functions as the wireless
interface. A realtime kinematic (RTK) gps is also connected to the generic com-
puter, acting as a local sensor to the system. There is a CAN bus link between
the generic computer and the vehicle network, via which messages on the vehicle
CAN bus can be read by the generic computer. This link forms one part of the
vehicle gateway. There is another CAN link between the ECU and the vehicle
CAN bus, via which the controller in the ECU can send actuation messages to
the various vehicle subsystems. This link forms the other part of the vehicle
gateway.

The vehicle subsystems in use are primarily the brake, engine and transmis-
sion controllers. The existing vehicle radar sensor messages are also read from
the CAN bus, and the radar sensor acts like a super sensor in the sense that it
directly sends information about detected vehicles ahead, rather than raw radar
readings.
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It is possible to optionally connect an external computer to the generic com-
puter via a 10/100mbps ethernet link. The external computer receives and
stores log messages and can function like an HMI.

The entire cooperative driving subsystem is thus implemented as two ad-
ditional nodes on the vehicle CAN bus. The links from the subsystem to the
vehicle CAN bus can be physically severed via an emergency switch (not shown
in Figure 3). Thus, it is possible to easily connect and disconnect the subsystem
from the vehicle.

5.2. Module architecture view

The module architecture view (as described in [42] ) encompasses two orthog-
onal structures: functional decomposition and layers. Functional decomposition
of a system captures the way the system is logically decomposed into subsys-
tems, modules and abstract program units. Layers re�ect design decisions based
on interfacing constraints. They reduce and isolate dependencies and facilitate
bottom-up building and testing of the various subsystems. The module view
is shown in Figure 4. Note that although [42] describe a module view as an
abstract, programming language independent implementation structure, Fig-
ure 4 shows the concrete choices we made for implementing the various layers.
Therefore, it is no longer abstract and programming language independent, but
re�ects the actual technologies used by our instantiation.

In Figure 4, the little "boxes" in the topmost layer ("Datalogger", "Su-
pervisor" etc.) represent software components that implement elements of the
reference architecture. The Figure also shows that from the viewpoints of exe-
cution environments and hardware, the instantiated architecture is split into a
two parts. The �rst part is an automotive grade ECU and the second part is
a generic computer running a Xenomai [50] based realtime Linux kernel as the
operating system.

The ECU can directly execute Simulink models using auto-generated code.
Thus, there is no consideration of operating system, manual task scheduling
and priorities, memory management etc. in the ECU part. This is so because
the ECU provides a light-weight real-time executive that transparently provides
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Orocos component Corresponding reference architecture element(s)

Supervisor Supervisor
Estimator World model

GPS Local sensor
CAN Vehicle gateway

Wireless Wireless, Semantic Data Analyzer
Datalogger HMI

Table 1: Orocos components and corresponding elements of the reference architecture

mechanisms for dealing with this. The control part of the conceptual architec-
ture executes within the ECU. The controller exchanges control and status data
with the generic computer over an internal CAN bus and outputs actuation
messages to the various vehicle subsystems over another CAN link, as shown in
Figure 3.

The generic computer executes an Intel x86 port of the Linux kernel, patched
with the Xenomai realtime framework. On top of the operating system, is the
Orocos [51] middleware layer. Orocos contains a realtime toolkit which provides
operating system abstraction services as well as facilities to create and execute
realtime software components in a time and event triggered fashion. It provides
a variety of inter-component communication methods for data and control �ow.
Components can be distributed across multiple computers and Orocos provides
all the middleware and glue for constructing a system out of a set of interacting
components. In addition to Orocos, there are two important system services
which provide gps data and clock synchronization. The gps data service uses
the UNIX gpsd [52] daemon for complete abstraction and management of the
gps hardware. The clock synchronization service is provided by the UNIX ntpd
[53] daemon, which can interact with gpsd in order to synchronize the system
clock with the gps time in Coordinated Universal Time (UTC) format.

The remaining system functionality is implemented using multiple periodic
Orocos components. These are the Supervisor, Wireless, Estimator, GPS and
CAN. There is also a datalogging component. The CAN component serves a
dual purpose. It is the vehicle gateway, as well as the means of communication
with the control component, which executes in the ECU. The snapshot of the
logical connections of these components are shown in Figure 5. The takeaway
for the reader from Figure 5 is that the Wireless, GPS and CAN components act
as model data suppliers to the Estimator, which acts as the World Model. Each
arrow in the �gure indicates the �ow of speci�c data structures. For example,
the 'wtm' arrow from the Wireless to the Estimator, is the 'Wireless Tra�clight
Message' which sends information about any detected tra�c lights. It is neither
possible nor necessary for this discussion to explain each connection or data�ow
in the �gure. All those details are extremely implementation speci�c and can
be found in the project's technical report[49].

The components are summarized in Table 1, together with the elements of
the conceptual architecture which they implement. Note that the components
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Figure 5: Logical view of instantiated architecture within the general purpose computer. See
accompanying text for description.
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do not have a one-to-one mapping with the conceptual architecture. In this par-
ticular instantiation, the HMI was created by post-processing speci�c info from
the datalogger. While the datalogger indirectly serves as an HMI component
it is more an artifact of the speci�c implementation. It is good to have from a
system development and testing viewpoint, but datalogging as a functionality is
not needed in the cooperative driving system and therefore is not present in the
conceptual architecture. That said, a subset of datalogging facilities may be re-
tained in the architecture for dealing with operational situations like diagnostics
and recovery.

The control element of the conceptual architecture is implemented by the
control models executing in the ECU.

5.3. Experience with the instantiation

In the instantiated system, the main feeling about the architecture was that
it 'just worked'. Once it was developed and debugged, the architecture related
code kept functioning quietly in the background. It was possible to shift focus
to the development and testing of the actual algorithms, without paying much
attention to the architecture. We believe that it re�ects positively on the ar-
chitecture when it does not keep popping up during the project's prototyping
phase, by limiting what can be done, or by imposing weird constraints on how
certain functionality can be implemented.

During the Grand Cooperative Driving Challenge (GCDC), quite a few
changes to the system were required to be made 'on the �y' to accommodate
changing competition rules and requirements during the preliminary heats. For
example, during tests with the other teams, a system mode had to be intro-
duced where all wireless transmission by the ego vehicle should be stopped,
turning it into a 'silent observer'. At other times, the Control element had to be
activated/deactivated depending on speci�c data packets broadcast by the orga-
nizers over the wireless. In all cases, it was easy to adapt the system behavior to
meet the new requirements. The adaptation was mostly done via the Supervi-
sor, since it had data and control oriented connections to all other architectural
elements and could independently trigger mode changes within them.

The load on the vehicle CAN bus underwent no practically signi�cant in-
crease. This is because the Control component's output consisted of only two
periodic CAN messages which contained information intended for the vehicle's
existing cruise control and braking systems. There was no change to the real
time properties of any existing vehicle systems.

There was a strong temptation among the developers to add any newly
required functionality within the Estimator component. This was because the
Estimator already contained all relevant system data and it was considered easy
to add in a new function there, which could fetch needed data using simple and
quick local access methods. It was considered to be comparatively more work
to add the new functions in some other component and setup the necessary in-
tercomponent data �ow mechanisms to fetch/push data from/to the Estimator.
There had to be a degree of insistence from the system architects to prevent
this from happening. Similarly, there would also be a temptation to bypass the
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Supervisor and directly open a control/data connection from one component to
another. The architects had to actively squash any 'shortcut' ideas because per-
mitting them implied that components may require knowledge of each other's
internal states or ways of functioning, which violates the reference architecture
principles. An example of 'quick-and-easy but bad' is: In the GCDC, a request
by another vehicle to 'join the platoon' is always accepted positively when the
ego vehicle is the platoon leader. Therefore, it is really easy to detect such an in-
coming request in the Wireless component, and send a positive accept response
from the Wireless component itself. This is bad, however, because doing so
splits the implementation of the platooning logic between the Wireless and the
Control components. Future upgrades to the platooning logic need to be done in
more than one component, and besides, it pollutes the function of the Wireless
component. The appropriate thing to do here is to propagate the request to the
Control component, where all platooning logic decisions are made.

The reference architecture enables the Supervisor to monitor the health of
other components, but in practice, it was often di�cult to �nd algorithms to
robustly determine a component's state of health. Although this is more of
an algorithm issue, we state it here because it has a direct impact on the Su-
pervisor's ability to perform its intended function and can thus undermine the
Supervisor's e�ective role within the architecture.

Other concerns raised during development of the instantiation were more
related to the instantiation technologies and do not directly re�ect on the refer-
ence architecture. For example, the CAN communication protocol between the
general purpose computer and the ECU had to be very carefully and painstak-
ingly designed, simply because the size of the CAN message frames (8 bytes,
in this instantiation) was a bottleneck. However, those concerns are not within
the scope of this paper.

6. Discussion

6.1. Re�ection on system characteristics

Section 2.1 presented some characteristics of cooperative driving systems.
This subsection shows how the reference architecture relates to those character-
istics.

1. The entire architecture is developed within the context of a 'node on the
vehicle network'. Thus, it is minimally invasive in the sense that it does
not dictate changes to the existing vehicle architecture.

2. The abstraction of a world model and model data processors together
provide a way to deal with limited trust in the inputs of individual sensors.
Data processors capable of fusing, �ltering and estimating sensor inputs
provide the world model with resilience to temporary bad inputs from
single sensors. They assure the accuracy of world model and ego vehicle
data between desired bounds.

3. The abstraction of world model data suppliers acts as a wrapper for sensor
data going into the world model. This abstraction contains and localizes
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any system modi�cations that need to be made as a result of changes to
the sensor system.

4. The safety paradox can be resolved to some extent by introducing model
data processors that conduct plausibility checks on the received data.
Plausibility checks can include a wide variety of checks based on phys-
ical models, as well as arbitrary rules. For example: It is implausible that
a vehicle that has consistently been a few meters ahead will suddenly re-
port a position a few kilometers away. Also, diagnostic and error handling
services ameliorate the situation further.

5. From an autonomous systems perspective, the concept of a system Ego or
Self maps directly to the functionality of the supervisor element.

6. The cooperative driving system uses the vehicle gateway to provide set-
points for other controllers, for example, the engine and brake ECUs.

7. World model data processors responsible for data fusion and �ltering can
generate measures of con�dence for the model data. These measures of
con�dence can be used for controlling the accuracy of broadcasted ego
vehicle data.

8. The HMI can be easily implemented and modi�ed via the world model
data consumer abstraction. Changes to the HMI essentially have no im-
pact on the rest of the system.

9. The architectural elements are split in a way that correlates well to the
split in domain expertise. For example, the entire control domain expertise
is isolated within the control element, and the control experts can operate
within the con�nes of this element without much consideration for other
system elements. Similarly, specialized signal processing and data fusion
experts can operate within the con�nes of individual world model data
processors.

10. The supervisor component encodes knowledge of the various architectural
elements and how they are supposed to work together in order to achieve
the system goals. Thus, it can be used for monitoring and diagnosis of the
elements and performing system degradation as applicable.

11. Since the reference architecture places no restrictions on the either the
choice or the number of execution environments, safety critical and non-
critical functions can be implemented on di�erent computer systems. This
enables decomposing the system into di�erent Automotive Safety Integrity
Levels (ASIL), permitting easier certi�cation. While this is true of execu-
tion environments, the services and architectural elements could still refer
to multiple functionalities with di�erent ASIL levels. So, �ner decompo-
sition would be necessary within these services/elements and this may or
may not always be straightforward. The reference architecture thus partly
addresses the issue, but further work is required.

12. The time criticality of tasks can similarly be managed by varying the
execution environment. Hard real time operating systems could be used
for time-critical tasks. In general, timing requirements are closely related
to safety requirements.
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13. System safety needs to be assured via a combination of algorithms and
architecture. From the architectural side, the e�ort can be concentrated
on preventing and detecting software structural failures, as well as provid-
ing hot backups of critical architectural elements. Additional 'observer'
components can be introduced that monitor values of critical variables
in the world model (which itself can be a implemented via a redundant,
distributed database). However, we stress that although this architec-
ture shows promise for tackling safety related concerns, a thorough safety
analysis has not yet been conducted.

14. Datalogging is very much dependent on the implementation technologies,
and as such is out of scope for the reference architecture. That said, it
must be mentioned that most implementation technologies that have the
depth and breadth needed to instantiate the reference architecture include
datalogging facilities.

15. The separation of data, computation and control occurs naturally via el-
ements like the world model, control and model data processors.

16. Parametrization and calibration are heavily implementation speci�c. They
are beyond the scope of the reference architecture and need to be dealt
with at the instantiation level.

17. By maintaining the reference architecture at a conceptual level, no imple-
mentation speci�c constraints are enforced on the instantiations. There-
fore, there is complete freedom to choose the execution environments and
internal communication mechanisms.

18. High and low level functions are segregated into distinct architectural el-
ements (model data suppliers, the world model, control) enabling their
execution on an environment most suitable to the nature of the function.

19. Static and dynamic functions in the system are naturally separated by
the reference architecture. World model data suppliers and consumers are
relatively static, while the world model and control elements are relatively
dynamic.

It is therefore valid to claim that the reference architecture gives due regard to
the system characteristics.

6.2. Scenario testing

A litmus test for an architecture is how well it performs in the �fth view
of the 4+1 set of architectural views described by [43] . The �fth view is that
of scenarios. The scenarios are instances of more general use cases and in
a sense are abstractions of the most important requirements. The �fth view
demonstrates how architectural elements work together seamlessly to satisfy the
scenarios. The demonstration could be expressed using object scenario diagrams
and object interaction diagrams [54]. In many cases though, it is su�cient to sit
with the architectural team and discuss how the architecture elements should
interact to satisfy a given scenario. If the scenario breaks the architecture by
requiring ugly �xes a.k.a hacks, then there is a shortcoming in the architecture.
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On the other hand, if the architecture can smoothly deliver the scenario, then
the architecture passes that scenario's test.

An exhaustive document compiling scenarios and use cases in cooperative
driving is not yet available. There exist, however, use cases that can be extracted
from various cooperative driving projects [30, 28, 32, 22, 33]. This reference ar-
chitecture and its instantiation within the Scoop project was tested for scenarios
generated by the GCDC 2011. The architecture handled all the scenarios ele-
gantly. In fact, in the days leading up to the GCDC 2011, the scenarios and
requirements changed frequently. These changes were smoothly absorbed by the
architecture as evidenced by the fact that the development team could easily
�nd ways in which the architectural elements could work together to meet the
scenario requirements.

Some example scenarios and informal descriptions of how they are satis�ed
by the architecture are given in the following subsection. The descriptions are
not exhaustive and are provided merely to give an idea of scenario testing.

6.2.1. Example scenarios

This subsection explains what happens during each of the following scenarios.
Scenario: Controlling vehicle motion while in a platoon.

1. Information regarding other vehicles comes in over the wireless. The se-
mantic data analyzer forwards it to the world model.

2. Additional information regarding the vehicle ahead comes from the vehicle
radar sensor. This information too goes to the world model.

3. World model data processors fuse and �lter the data to maintain a con-
sistent world representation.

4. The control uses the world model data to control ego vehicle motion. It
also passes back relevant data about the ego vehicle control to the world
model. (Note that the data exchange is application speci�c, and not part
of the reference architecture.)

5. Supervisor non-obstructively monitors various elements.

Scenario: Vehicle approaches platoon from behind and wishes to join it. (Note:
The applicable interaction protocol states that a join request is made by modi-
fying a status parameter in the ego vehicle's periodic information broadcast.)

1. Information about vehicles in the platoon ahead is received over the wire-
less. The semantic data analyzer forwards it to the world model.

2. The world model updates, to re�ect the presence of the vehicles ahead.

3. The platooning logic in the control realizes that ego vehicle can join the
platoon. It modi�es ego vehicle's relevant status parameter in the world
model.

4. The status parameter (and thus, a request to join the platoon) is broad-
casted via the wireless as part of the standard periodic ego vehicle infor-
mation broadcast.

5. If a response (ok/not ok to join) is received over the wireless, the semantic
data analyzer sends it to the supervisor, who in turn noti�es the control.
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6. If no response is received, the control times out after a prede�ned time has
elapsed and resets the ego vehicle status information in the world model

Scenario: GPS signal is lost.

1. The model data supplier that supplies GPS signal to the world model
sends 'No signal'.

2. The model data processor responsible for estimating ego vehicle position
starts lowering its con�dence estimates in the continued absence of the
GPS data.

3. When the con�dence of the position estimates falls below a pre-speci�ed
level, the control stops taking charge of vehicle motion. Appropriate mes-
sages are sent to the supervisor and the world model is updated.

4. The update to the world model is picked up by the HMI and the driver is
noti�ed that the control is no longer in charge.

Scenario: There is an external demand for imposition of radio silence.

1. The demand is received over the wireless.

2. The semantic data analyzer forwards it to the supervisor.

3. The supervisor sets appropriate modes in the wireless broadcast and con-
trol.

4. The control updates the world model with the current control mode

5. The HMI picks up the update in the world model and noti�es the driver
if necessary.

6.2.2. Handling unexpected scenarios

It is a fact that scenarios will turn up, which can not be immediately handled
by a particular instantiation. In such cases, the primary test of the reference
architecture is the ease with which temporary solutions can be implemented.
A secondary test is the ease with which the temporary solutions can later be
migrated to the various architectural elements. While no standard metrics exist
for measuring the ease of these practices, our reference architecture aids the
former by suggesting and enabling a straightforward approach: All unantici-
pated functionality goes in the supervisor. This approach works both from the
conceptual as well as the practical viewpoints. Conceptually, the supervisor is
ultimately responsible for all the system functionality and must make up for the
shortcomings of other architectural elements. Practically, the supervisor has
data and control communications with all elements which makes it easy from a
development perspective to add functionality there.

6.3. AUTOSAR and the reference architecture

Any discussion of automotive architecture today would be incomplete with-
out the mention of AUTOSAR [55]. The AUTOSAR partnership is an alliance
of OEM manufacturers and Tier 1 automotive suppliers working together to
develop and establish a de facto open industry standard for automotive E/E
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architecture which will serve as a basic information infrastructure for the man-
agement of functions within both future applications and standard software
modules. The AUTOSAR standard comprises a set of speci�cations describing
software architecture components and de�ning their interfaces as well as the
de�nition of a standardized development methodology [56].

The AUTOSAR Run Time Environment (RTE), Basic Software and Virtual
Function Bus (VFB) provide the basis for specifying execution environments and
platform services needed by the reference architecture. Furthermore the VFB
and AUTOSAR's standardized interface de�nitions can be used for specifying
needed communication facilities between the reference architecture elements as
well as with the platform and vehicle interfaces. The concept of the AUTOSAR
software component can be directly used to realize the functionality of individual
reference architecture elements. AUTOSAR's special sensor/actuator software
components can be used to encapsulate the functionality of the model data sup-
pliers and provide abstract actuator interfaces. Elements like the world model,
if accepted widely enough, could form a part of AUTOSAR's infrastructure
services.

The concepts of the reference architecture �t well within the AUTOSAR
paradigm. Therefore, AUTOSAR tools and methods can potentially be used
when mapping the reference architecture to a speci�c instantiation. The refer-
ence architecture can be rapidly instantiated using industry-accepted toolchains
and development processes. This in turn reduces the time to market, which is
a competitive factor for automotive manufacturers.

6.4. Comparison with autonomous system architecture

A cooperative driving system can be considered to be an autonomous sys-
tem, subject to operational constraints. Therefore, it is logical to compare our
reference architecture with architectures speci�cally targeted for autonomous
systems.

One of the successful architectures for autonomy is Realtime Control System
(RCS) [57, 58, 59, 60]. RCS and derivative architectures are based on a general
theory of intelligence described in [61] . A comparison with these architectures
shows that some of their principles are shared by our reference architecture.
Speci�cally, RCS version 4 considers Sensory Processing (SP), World Model
(WM), Value Judgment (VJ) and Behavior Generation (BJ) as the building
blocks of intelligence. In our reference architecture, there is a one to one cor-
respondence between the world models. The SP is equivalent to the model
data supplier elements, while VJ and BG are abstracted by the control element.
RCS-4 decomposes the architecture into hierarchies based on temporal and spa-
tial resolution of goals and tasks. Our reference architecture does not specify
speci�c hierarchical decomposition stratagems, but supports hierarchies within
and between architectural elements via their interface abstractions. Hierarchies
in a cooperative driving system are a�ected by the context of the system i.e.
by the fact that it is essentially just one box among many others on the vehicle
network, without direct control over the contents of the other boxes.
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Blackboard architectures [62] are also common in autonomous systems. In
a blackboard architecture, a set of problem solving modules share a common
global database. Our architecture essentially uses the world model as a black-
board representation of the perceived world. The model data processors behave
like the problem solvers. Depending on the particular instantiation, the model
data processors (problem solvers) can make concerted e�orts to solve speci�c
problems, or they may be redundant solvers, checking each others solutions.
The world model acts as the control shell, coordinating and managing access to
the blackboard by the various model data processors. By restricting the black-
board to a single architectural element with well de�ned interfaces, the ease of
implementing the blackboard is improved.

These brief comparisons show that our reference architecture does not make
radical departures from established principles of autonomous system architec-
tures. In the following section we elaborate on novel aspects of our reference
architecture and point to directions for future work.

6.5. Role during instantiation

The reference architecture was instantiated as a cooperative adaptive cruise
controller for the Grand Cooperative Driving Challenge, 2011, as described in
section 5. In this section, we re�ect on the role played by the reference archi-
tecture during the instantiation.

When attempting to create a working implementation of any system, starting
with a completely blank slate is a time consuming and error prone process. It
is helpful to have a carefully considered set of guidelines and solution ideas to
kickstart the thinking. The reference architecture endeavors to provide a generic
template for implementing a cooperative driving solution. It becomes a starting
point for the design, which can be re�ned and speci�cally customized for the
system being implemented.

The reference architecture next helps to communicate the key ideas and
concepts of the architecture to the development team. It provides a common
terminology within the project which helps to eliminate confusion caused by
subjective interpretation of certain words. For example, we have experienced
that the word 'Supervisor' has di�erent connotations and meanings to di�erent
people. By specifying the role of the Supervisor in this architecture and provid-
ing examples of what the Supervisor does, the reference architecture facilitates
a common understanding.

The reference architecture plays an important role in eliciting technical re-
quirements for the instantiation. This is because it describes the design at a
rather abstract level and then includes guidelines and 'points to ponder' for an
instantiation. A lot of the technical requirements for the instantiation emerge
when thinking about these guidelines. It also helps to identify key issues and
performance constraints that the particular instantiation needs to address.

The reference architecture triggers proactive planning of the system testing
and veri�cation processes. Advance knowledge of the main system elements
enables the development of test harnesses and protocols simultaneously with
the development of the components themselves.
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Finally, the reference architecture provides a 'big picture' throughout the
instantiation phase. This helps to clarify the functionality which should be
provided by each component. Without the reference architecture, it is all too
easy to succumb to programming convenience/laziness and quickly add in minor
functions where they should not be located. Doing this inevitably leads to
polluting the clean design and can lead to complex interdependencies among
the components.

6.6. Highlights and future work

This work took the concept of a reference architecture and applied it to a
cooperative driving system. The resulting reference architecture was instanti-
ated, tested and validated on a commercial truck, in a competitive real world
usage scenario. This work thus provides an engineering basis for development
of cooperative driving systems.

From the view point of industrial exploitation, it is important that the refer-
ence architecture be realizable using Commercial O� The Shelf (COTS) compo-
nents, established toolchains and development processes. The reference archi-
tecture corresponds well with the industry standard AUTOSAR systems, and
thus there are no con�icts in ful�lling this requirement. The correspondence
also implies a shorter time to market, which is a competitive advantage. The
architecture is minimally invasive as it requires no signi�cant modi�cation to
existing vehicle functionality. Since it is restricted to a "node on a bus", it is
easy to provide the cooperative driving feature only on speci�c vehicle variants,
or as an upgrade to an existing vehicle. That said, assumptions have been made
regarding the availability of certain services from the rest of the vehicle. Such
services typically involve the ability to provide actuation messages to other sub-
systems like the engine, transmission and the brakes. It is possible that these
existing services in the vehicle may need to be slightly modi�ed or recalibrated
in order to better serve the needs of the cooperative driving functions. For
example, when instantiating the architecture on a commercial truck, the min-
imum speed for permitting activation of cruise control had to be recalibrated
from 10km/h down to 0 km/h. In all such cases, the modi�cations and their
impact needs to be thoroughly understood.

The ability to separate timing and safety critical functions from non-critical
ones facilitates the support for functional safety according to the upcoming ISO
26262 standard. The modular concept provides good separation of concerns
and domain speci�c knowledge is con�ned within the boundaries of individual
architectural elements. The modularity also helps to contain errors and pre-
vents faults from propagating beyond the element they occurred in. It must
be mentioned though, that a comprehensive analysis of the architecture with
regards to safety issues has not yet been conducted. This, together with ASIL
decomposition of the architecture is a signi�cant future work.

Services needed for cooperative driving are listed, together with the archi-
tectural elements for enabling them. This is done without constraining the
implementation technologies. Keeping high levels of abstraction provides the
necessary �exibility needed by speci�c instantiations. All instantiations though,
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retain the proven principles of the reference architecture. The usage of plugins
within architectural elements enables a two pronged advantage: New algorithms
for speci�c architectural elements can be easily tested. At the same time, the
architecture becomes a natural basis for evaluating and comparing di�erent al-
gorithms.

Critical parts of the architecture are completely isolated from each other.
The world model has no dependencies on the control, which in turn is unre-
lated to elements like the HMI or wireless. There is prede�ned distribution of
work and roles among the elements, yet the supervisor element can override the
structure wherever and whenever the need arises. These overrides can be real-
ized via the properties common to all elements, like diagnostics, (a)synchronous
command execution, rerouting of data�ow ports etc.

It might be considered that the reference architecture is not su�ciently re-
�ned for a practical implementation, but doing so is missing the entire point
of a reference architecture. Details related to an implementation are missing
precisely because they are implementation speci�c. That said, there are cer-
tain undeveloped aspects. Foremost among these is that the onus of assuring
non-functional system properties like safety, is laid squarely on the architect in-
stantiating the reference architecture. In theory, a reference architecture should
provide some guidelines and mechanisms for assuring such properties. System
safety is a big area of research and some of the ideas developed in that area
could be transferred to reference architectures in the form of system structures
and behavior rules.

The reference architecture could also be extended with mechanisms for sup-
porting timing analysis and other analytical formal methods. The world model
and control elements could be re�ned by presenting various alternative represen-
tations and hierarchies. For example, some cooperative driving scenarios may
require functionalities like look-ahead, shorter as well as longer term planning,
etc. The control element could be hierarchically re�ned towards such ends. This
would be pushing into the area of domain speci�c algorithms and structures,
but sometimes there is a blurred line between generic architecture and domain
speci�c knowledge.

Finally, no matter how good a reference architecture is, it can always be
ruined by a bad implementation. Therefore, a relevant question to ask is, "How
should one go about instantiating a reference architecture? What considerations
and reasoning should be applied?" The reference architecture provides some
guidelines, but it would be nice to include a description of the instantiation
process, together with templates, checklists and mechanisms to avoid common
traps and pitfalls.
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